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The derivation of an expression for the reflectivity of transpar-
ent films or stacks of thansparent films, free or on a substrate, is
sketched. This can be used to compute the colours. First, the sim-
plest case of a thin film (soap bubble) is considered. Then the trans-
fer matrix method is applied to stacks of layers with alternating in-
dex of refraction, and next also absorbing layers are considered, in
the most important case of perpendicular incidence of the light and
finally in the general case of oblique incidence.

A Single Film

First a monolayer is considered, and normal incidence of the
light. Assume that the z-axis is pointing to the right, the back side
of the film is the plane z = 0, and the film has thickness D and
refraction index n. The electric field to the left is that of the incoming
and the reflected wave

Ex(z, t) = Ar(z)e−iωt + Al(z)e−iωt = Ar(0)ei(kz−ωt)+ Al(0)e
i(−kz−ωt)

(1)
where

k =
2π

λ
, (2)

λ being the wavelength in air or vacuum.
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Ar and Al are assumed to be complex quantities, and here and
in the following, the physical quantities are given by the real parts
of the complex expressions.

We are looking for the reflectivity which is given by

R =

∣∣∣∣Al

Ar

∣∣∣∣2 . (3)

For the field in the dielectric layer we write

Ex(z, t) = A′
re

i(nkz−ωt) + A′
le

i(−nkz−ωt) (4)

and, finally, the outgoing wave to the right is

Ex(z, t) = ei(kz−ωt) (5)

where the amplitude is arbtrarily taken to be real and equal to 1.
At the boundaries, the tangential components of the electric and

of the magnetic field are continuous. For normal incidence, this sim-
ply leads to the continuity of Ex and its partial derivative ∂Ex

∂z :

A′
r(0) + A′

l(0) = 1
nA′

r(0)− nA′
l(0) = 1 (6)

at z = 0 and

Ar(−D) + Al(−D) = A′
r(0)e

−iknD + A′
l(0)e

iknD (7)

Ar(−D)− Al(−D) = nA′
re

−iknD − nA′
le

iknD (8)

at z = −D. As in equation (3) only the ratio of Al over Ar occurs,
we can omit constant overall factors. We thus get

A′
r(0) ∝ n + 1 (9)

A′
l(0) ∝ n − 1 (10)
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and

Ar(−D) + Al(−D) ∝ A′
r(0)e

−iknD + A′
l(0)e

iknD (11)

Ar(−D)− Al(−D) ∝ nA′
r(0)e

−iknD − nA′
l(0)e

iknD (12)

Solving these equations we obtain

Ar(−D) ∝ 2 cos(nkD)− i(n + n−1) sin(nkD)

Al(−D) ∝ −i(n − n−1) sin(nkD) (13)

and

R =

∣∣∣∣Al(−D)

Ar(−D)

∣∣∣∣2 =
(n − n−1)2 sin2(nkD)

4 + (n − n−1)2 sin2(nkD)
(14)

for the reflectivity.

Dielectric Layers: the Transfer-Matrix Method

Assume dielectric layers on a substrate with index of refraction
n0. The z = 0 plane is the boundary between the first layer and
the substrate, and the layer is characterized by its refractive index
n1 and thickness D1. The layers are numbered consecutively in the
order they are deposited.

An electromagnetic plane wave propagates and θ is the angle
between the z axis and its wave vector k⃗ in the vacuum, where k =
|⃗k| = 2π

λ , λ being the wavelength.
We choose the coordinate system such that the plane of inci-

dence is the x–z–plane. Thus the wave vector, which for the inci-
dent wave in vacuum (or air) is k⃗ = (kx, 0, kz), is in the layer with
number j

k⃗ j = (kx, 0, njk cos(θj)) (15)
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and for the reflected wave it is

k⃗′j = (kx, 0,−njk cos(θj)) (16)

where
nj sin(θj) = sin(θ) (17)

We write for the two polarisations in the layer with index j

E⃗j,s (⃗r, t) = Sr⃗eyei(⃗kj ·⃗r−ωt) + Sl⃗eyei(⃗k′j ·⃗r−ωt) (18)

E⃗j,p (⃗r, t) = Pr⃗ey ×
k⃗ j

k j
ei(⃗kj ·⃗r−ωt) + Pl⃗ey ×

k⃗′j
k j

ei(⃗k′j ·⃗r−ωt) (19)

As the factor e−iωt is the same in all terms, it is omitted in the
following.

From Maxwell’s equations it follows that at boundaries the tan-
gential components of the electric field and of the magnetic field
are continuous. This leads to the boundary conditions depending
on the polarisation of the waves; E⃗s is perpendicular to the plane of
incidence and E⃗p is parallel to it. Denoting the z-coordinate of the
boundary between layer i and layer j by zb, the boundary conditions
are

E(i)
s (zb) = E(j)

s (zb) (20)
∂

∂z
E(i)

s (zb) =
∂

∂z
E(j)

s (zb) (21)

cos(θi)E(i)
p (zb) = cos(θj)E(j)

p (zb) (22)
1

cos(θi)

∂

∂z
E(i)

p (zb) =
1

cos(θj)

∂

∂z
E(j)

p (zb) . (23)
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The s-polarisation

From equations (20, 21) we see that the quantities

F(z) := Es(z) and G(z) :=
1
k

∂

∂z
Es(z) (24)

are continuous across the boundaries. Knowing their values at z =
0, then from equation (18) we can get the values at z = −D1.

F(0) = Sr + Sl (25)
G(0) = in1 cos(θ1)(Sr − Sl)

F(−D1) = Sre−in1k cos(θ1)D1 + Sle
in1k cos(θ1)D1 (26)

G(−D1) = in1 cos(θ1)(Sre−in1k cos(θ1)D1 − Sle
in1k cos(θ1)D1) (27)

Expressing Sr and Sl through F(0) and G(0)

Sr =
1
2
(F(0) +

G(0)
in1 cos(θ1)

) (28)

Sl =
1
2
(F(0)− G(0)

in1 cos(θ1)
) (29)

we arrive at the following matrix equation:(
F(−D1)
G(−D1)

)
= M1,s

(
F(0)
G(0)

)
(30)

with

M1,s =

(
cos(n1k cos(θ1)D1) − 1

n1 cos(θ1)
sin(n1k cos(θ1)D1)

n1 cos(θ1) sin(n1k cos(θ1)D1) cos(n1k cos(θ1)D1)

)
(31)
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The matrix is the transfer matrix which gives the name to the
method. If there is a second layer with n2, D2, the combined ma-
trix is M2M1, and so on. On top of the uppermost layer, there is air
or vacuum, and

Sr(z) =
1
2

F(z) +
1

2i cos(θ)
G(z)

Sl(z) =
1
2

F(z)− 1
2i cos(θ)

G(z) (32)

In the substrate, there is only an outgoing amplitude Sr which may
arbitrarily chosen and is given the value 1.

The reflection coefficient is given by

Rs(θ) =

∣∣∣∣Sl(z)
Sr(z)

∣∣∣∣2 (33)

and the transmission is 1 − Rs(θ), as there is no absorption.

The p-polarisation

Equations (22, 23) show that now the quantities

F(z) := cos(θ1)Ep(z) = cos(θ1)(Pr(z) + Pl(z)) and

G(z) :=
1

k cos(θ1)

∂

∂z
Ep(z) = in1(Pr(z)− Pl(z)) (34)

are continuous across the boundaries. Proceeding as before, one ob-
tains (

F(−D1)
G(−D1)

)
= M1,p

(
F(0)
G(0)

)
(35)

with

M1,p =

(
cos(n1k cos(θ1)D1) − cos(θ1)

n1
sin(n1k cos(θ1)D1)

n1
cos(θ1)

sin(n1k cos(θ1)D1) cos(n1k cos(θ1)D1)

)
(36)
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The amplitudes are recovered by

Pr(z) =
1

2 cos(θ)
F(z)− i

2
G(z)

Pl(z) =
1

2 cos(θ)
F(z) +

i
2

G(z) (37)

The reflection coefficient is given by

Rp(θ) =

∣∣∣∣ Pl(z)
Pr(z)

∣∣∣∣2 (38)

and the transmission is 1 − Rp(θ).

Unpolarised light

In this case, we have

R(θ) =
1
2
(Rs(θ) + Rp(θ)) . (39)

Including Absorption

The geometry is assumed to be the same as before; now only the
most important case of normal incidence is treated, i.e. θ = 0.

We denote by n0 the refractive index of the substrate, by κ0 its
extinction coefficient. Both quantities may be combined to the com-
plex index of refraction

ñ0 = n0 + iκ0 . (40)

The refractive index of the first transparent layer is denoted by ñ1.
By admitting a complex value, we can also deal with absorbing lay-
ers.
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The electric field of the incident plane wave in the vacuum to-
gether with the reflected wave is given by equations (1, 2).

For the field in the first layer we write

Ex(z) = A1eiñ1kz + A2e−iñ1kz (41)

and that in the substrate is written as

Ex(z) = eiñ0kz (42)

where the amplitude is arbtrarily taken to be real and equal to 1.
At the boundaries between different layers the electric field Ex

and its partial derivative ∂Ex
∂z are continuous, therefore F and G are

defined as before in eq. (24):

F(z) := Es(z) and G(z) :=
1
k

∂

∂z
Es(z) (43)

and we have now

F(0) = Ar + Al (44)
G(0) = iñ1(Ar − Al)

F(−D1) = Are−iñ1kD1 + Ale
iñ1kD1 (45)

G(−D1) = iñ1(Are−iñ1kD1 − Ale
iñ1kD1) (46)

Expressing Ar and Al through F(0) and G(0)

Ar =
1
2
(F(0) +

G(0)
iñ1

) (47)

Al =
1
2
(F(0)− G(0)

iñ1
) (48)

we arrive at the matrix equation:(
F(−D1)
G(−D1)

)
= M1

(
F(0)
G(0)

)
(49)
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with

M(1) =

(
cos(ñ1kD1) − 1

ñ1
sin(ñ1kD1)

ñ1 sin(ñ1kD1) cos(ñ1kD1)

)
(50)

The matrix looks simpler than those obtained before, but it is not,
because it is no longer real. If there is a second layer with n2, D2,
there is a similar matrix M2, and so on. On top of the uppermost
layer, there is air or vacuum, and

Ar(z) =
1
2

F(z) +
1
2i

G(z)

Al(z) =
1
2

F(z)− 1
2i

G(z) (51)

In the substrate, there is only an outgoing amplitude Sr which may
arbitrarily chosen and is given the value 1.

The reflection coefficient is given by

Rs(θ) =

∣∣∣∣Sl(z)
Sr(z)

∣∣∣∣2 (52)

While it is not difficult to implement the above equations using
complex algebra, if the aim is a PostScript figure, real and imaginary
parts must be separated, as complex numbers are not defined in
PostScript. We therefore rewrite eq. (50) as

M(1) =

(
1
2(e

iñ1kD1 + e−iñ1kD1) − 1
2iñ1

(eiñ1kD1 − e−iñ1kD1)
ñ1
2i (e

iñ1kD1 − e−iñ1kD1) 1
2(e

iñ1kD1 + e−iñ1kD1)

)
(53)

M(1)
1,1 = M(1)

2,2 =
1
2

(
e−κ1kD1(cos(n1kD1) + i sin(n1kD1))

+ eκ1kD1(cos(n1kD1)− i sin(n1kD1))
)

(54)
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M(1)
1,2 =

in1 + κ1

2(n2
1 + κ2

1)

(
e−κ1kD1(cos(n1kD1) + i sin(n1kD1))

− eκ1kD1(cos(n1kD1)− i sin(n1kD1))
)

(55)

M(1)
2,1 =

−in1 + κ1

2

(
e−κ1kD1(cos(n1kD1) + i sin(n1kD1))

− eκ1kD1(cos(n1kD1)− i sin(n1kD1))
)

(56)

We now write
M(1) = M(1,re) + iM(1,im) (57)

and have

M(1,re)
1,1 = M(1,re)

2,2 = cos(n1kD1) cosh(κ1kD1)

M(1,im)
1,1 = M(1,im)

2,2 = − sin(n1kD1) sinh(κ1kD1)

M(1,re)
1,2 = − κ1

n2
1 + κ2

1
cos(n1kD1) sinh(κ1kD1)

− n1

n2
1 + κ2

1
sin(n1kD1) cosh(κ1kD1)

M(1,im)
1,2 = − n1

n2
1 + κ2

1
cos(n1kD1) sinh(κ1kD1)

+
κ1

n2
1 + κ2

1
sin(n1kD1) cosh(κ1kD1)

M(1,re)
2,1 = −κ1 cos(n1kD1) sinh(κ1kD1)

+n1 sin(n1kD1) cosh(κ1kD1)
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M(1,im)
2,1 = n1 cos(n1kD1) sinh(κ1kD1)

+κ1 sin(n1kD1) cosh(κ1kD1) (58)


