
www.itp.uni-hannover/˜zawischa/ITP/computecolour.html

How to calculate and render colours –
thin films as an example

Dietrich Zawischa
ITP, Leibniz University Hannover, Germany

Determination of the colour stimulus

We consider a piece of a flat soap film (which consists essen-
tially of water), or an oil film on water. Assume that this film is seen
in front of a dark background. Further assume that we look at the
mirror image of a uniformly white surface (this might be the over-
cast sky) reflected by the film, and, for simplicity, assume that the
light is incident perpendicular to the film.

Let the origin of the coordinate system be on the upper surface
of the film and let the z-axis point towards the observer. The in-
coming wave is assumed to be linearly polarized; its electric field is
written as

Ein(z, t) = E0 cos(−kz − ωt) (1)

where k = 2π/λ, ω = 2πν, with λ the wavelength and ν the fre-
quency. The brightness (energy flux) is proportional to the square of
the amplitude E0.

Only a small fraction of the incident light is reflected at the front
surface of the film. Another small fraction is reflected at the back
surface. (Multiple inner reflections are neglected.) The sum of these
two reflected waves reaches the eye of the observer. In order to com-
pute its colour, we first determine how the reflected intensity de-
pends on the wavelength λ of monochromatic light.

http://www.itp.uni-hannover.de/~zawischa/ITP/computecolour.html

2

The electric field of the wave reflected at the upper surface is

− αE0 cos(kz − ωt) (2)

where the positive number α < 1 is given by the square root of the
reflection coefficient. The wave reflected at the back surface then is

αβE0 cos(k(z + s)− ωt) (3)

where β is a number a little bit smaller than 1, accounting for the
fact that the intensity of the incoming light at the back surface is
reduced and that part of the light reflected at the back surface is re-
flected again at the front surface. The wave (2) has suffered a change
of sign, being reflected at the more dense medium, which did not
happen to wave (3). The quantity s is the optical path length differ-
ence of the two interfering waves; as the rays are perpendicular to
the film it is just

s = 2dn (4)

with d the thickness and n the index of refraction of the film.
The superposition (sum) of the terms (2) and (3) gives the total

reflected wave.

Erefl(z, t) = αE0[− cos(kz − ωt) + β cos(kz − ωt) cos(ks)
−β sin(kz − ωt) sin(ks)] (5)

The time average of its square at a fixed value of z is proportional
to the reflected intensity. As cos2(kz − ωt) = 1

2 , sin2(kz − ωt) = 1
2 ,

cos(kz − ωt) sin(kz − ωt) = 0, the result can be written as

Irefl(λ) ∝
α2E2

0
2

[
1 + β2 − 2β cos(

2πs
λ

)

]
(6)

The incident light is supposed to have the spectral distribution
S(λ) of blackbody radiation of temperature T = 6504 K, which is

3

similar to the standard daylight D65, approximating the overcast
sky. From Planck’s formula we get

S(λ) ∝ [λ5(exp(
hc

λkBT
− 1)]−1 (7)

where h is Planck’s constant, c the velocity of light, and kB Boltz-
mann’s constant.

Replacing E2
0 in equation (6) by S(λ), the the colour stimulus for

a given thickness of the film (or optical path difference, cf. eq. (4)) is
obtained, i.e.

ϕ(s, λ) = C
1 + β2 − 2β cos(2πs

λ)

λ5(exp(hc
λkBT − 1)

(8)

All constant factors have been absorbed in one constant C. This will
be chosen in the last step to optimize the brightness of the colours
rendered on the screen.

The CIE tristimulus values and chromaticity coordi-
nates

From the colour stimulus ϕ, using the CIE 1931 colour matching
functions1 x̄(λ), ȳ(λ), and z̄(λ), the colour coordinates X, Y, and Z
(depending on the optical path difference s) are obtained as follows:

X(s) = ∑
i

ϕ(s, λi) x̄(λi)∆λ

Y(s) = ∑
i

ϕ(s, λi) ȳ(λi)∆λ (9)

Z(s) = ∑
i

ϕ(s, λi) z̄(λi)∆λ

1Tables of these functions can be downloaded from
http://cvrl.ioo.ucl.ac.uk/index.htm

http://cvrl.ioo.ucl.ac.uk/index.htm

4

Note that ȳ(λ) is proportional to the lightness sensitivity curve
V(λ) of the eye (of the standard observer), and therefore Y(s) is
a measure of the brightness (luminance).

It is interesting to obtain in addition the colour coordinates x, y
and to plot the locus of reflected colours in the CIE chromaticity
diagram.

x(s) =
X(s)

X(s) + Y(s) + Z(s)
, y(s) =

Y(s)
X(s) + Y(s) + Z(s)

. (10)

This is shown in figure 1. We see that some of the colours seen on
thin films or soap bubbles can not be reproduced exactly with the
sRGB primaries. In particular, there appear brilliant bluish green
hues which can not be displayed. Nevertheless, as we shall see, the
picture to be obtained on the screen is quite satisfactory!

Parameters of the output device (screen)

We assume that the output device conform to the sRGB recom-
mendations2. This means, in brief, that the white point is D65

xW = 0.3127 yW = 0.3290 , (11)

and the colour coordinates of the primaries R, G, and B are

xR = 0.640 yR = 0.330
xG = 0.300 yG = 0.600 (12)
xB = 0.150 yB = 0.060 ,

and the effective CRT gamma is γ = 2.2.
The tansformation matrix from X, Y, Z to R, G, B, as given in the

reference cited2, can be calculated from the above data:
2http://www.color.org/sRGB.xalter

http://www.color.org/sRGB.xalter

5

Figure 1: The CIE 1931 xy diagram with the gamut of colours which
can be produced with the sRGB primaries, and the locus of the soap
film colours as seen in reflection. The starting point at zero thickness
is in the bluish grey.

6

First, from the colour coordinates the tristimulus values of the
primaries are obtained

XR = u1xR YR = u1yR ZR = u1(1 − xR − yR)

XG = u2xG YG = u2yG ZG = u2(1 − xG − yG) (13)
XB = u3xB YB = u3yB ZB = u3(1 − xB − yB) ,

as well as those of the white point:

XW = xW/yW YW = 1.0 ZW = (1 − xW − yW)/yW . (14)

The requirement that

R + G + B = W (15)

yields three equations for the three unknowns u1, u2, u3 which de-
termine the relative strengths of the primaries.

We next express the primary X through R, G, B:

XRRX + XGGX + XBBX = 1
YRRX + YGGX + YBBX = 0 (16)

ZRRX + ZGGX + ZBBX = 0

The coefficients XR, XG . . . are known from eq. (13), the quantities
RX, GX, BX are the unknowns to be determined from this system of
equations. Similarly for Y and Z we obtain

XRRY + XGGY + XBBY = 0
YRRY + YGGY + YBBY = 1 (17)

ZRRY + ZGGY + ZBBY = 0

and

XRRZ + XGGZ + XBBZ = 0
YRRZ + YGGZ + YBBZ = 0 (18)

ZRRZ + ZGGZ + ZBBZ = 1 .

7

Now we have the complete transformation matrix to convert
any set of tristimulus values X, Y, Z to R, G, B, the intensities of the
sRGB primaries:

R = RXX + RYY + RZZ
G = GXX + GYY + GZZ (19)
B = BXX + BYY + BZZ .

Negative Values, Normalization, and Gamma Correc-
tion

As has been shown in figure 1, not all occurring colours can be
reproduced within the gamut chosen, which means that some of the
tristimulus values will turn out to be negative. These values will fi-
nally be put equal to zero. This will, however, also affect the bright-
ness, and for highest possible accuracy, the remaining positive tri-
stimulus values should be scaled down so that the brightness is not
changed.

Assume that for some value of s we get negative values of R(s).
The brightness is proportional to

Y(s) = YRR(s) + YGG(s) + YBB(s) . (20)

If now the first term on the right hand side is missing, we have to
multiply G(s) and B(s) by

Y(s)/(Y(s)− YRR(s)) (21)

to get the correct luminance. Negative values of G(s) and B(s) are
treated analogously.

Colour stimulus functions are in most cases normalized in an
arbitrary way. The primary intensities on the display, on the other

8

hand, are restricted to values between 0 and 1, where 1 means max-
imum intensity. Therefore, in our example, after computing the tri-
stimulus values R, G, B using equations (8, 9, 19) for all interesting
values of s, one has to find the maximum value of R(s), G(s), and
B(s), and divide all obtained tristimulus values by it.

Next we have to account for the nonlinearity of brightness per-
ception. This is done according to the sRGB recommendations2 as
follows:

If R, G, B ≤ 0.00304,

R′ = 12.92 R
G′ = 12.92 G (22)
B′ = 12.92 B

else if R, G, B > 0.00304,

R′ = 1.055 R1.0/2.4 − 0.055
G′ = 1.055 G1.0/2.4 − 0.055 (23)
B′ = 1.055 B1.0/2.4 − 0.055 ,

where the nonlinear R′, G′, B′ values are then used as input for
colour setting (as in the PostScript language) or are converted to
24-bit encoding (8 bits/channel). Assuming the digital count 0 for
black and 255 for white, this is

R8bit = 255 R′

G8bit = 255 G′ (24)
B8bit = 255 B′

and the resulting numbers are rounded to integer. This is the final
result to be displayed, giving the colour as a function of the optical
path difference s.

9

Figure 2: The result of the FORTRAN sample code of appendix A:
colours of a tapered soap film in reflected light.

Figure 2 shows the result of the FORTRAN sample code shown
in appendix A. The ticks mark the optical path difference between
the two interfering rays and are at 500 nm, 1000 nm, 1500 nm . . .

The picture looks very realistic and compares well with a digital
photograph, as has been shown; but it is interesting to see the locus
of the colours in the CIE-chromaticity-diagram, as shown in figure
1: the curve does not fit into the gamut of colours provided by the
sRGB primaries. This, however, does not impair the agreement with
the photograph, as the photograph’s colours are also restricted to
the sRGB gamut. In fact, the soap film exhibits more vivid blue-
green colours than can be displayed.

The FORTRAN code shown in the following appendix can also
be viewed or downloaded from
http://www.itp.uni-hannover.de/ z̃awischa/ITP/soapfilm.for

http://www.itp.uni-hannover.de/~zawischa/ITP/soapfilm.for

10

Appendix A: FORTRAN sample code

c Colours of a thin film in reflected light.

c Illumination: blackbody radiation,

c colour temperature Tabs

c

implicit real*8 (a-h,o-z)

dimension iskalf(1000),icv(3,1000),Yuarray(3)

real*4 colcomp(3,1000)

common XuR,YuR,ZuR,XuG,YuG,ZuG,XuB,YuB,ZuB,

1 RuX,GuX,BuX,RuY,GuY,BuY,RuZ,GuZ,BuZ,

2 pi

c

pi=3.141592653589d0

Tabs=6504

nhor=1000

c sRGB primaries

xr=0.64

yr=0.33

zr=1.d0-(xr+yr)

xg=0.30

yg=0.60

zg=1.d0-(xg+yg)

xb=0.15

yb=0.06

zb=1.d0-(xb+yb)

c white D65

xw=0.3127

yw=0.3290

zw=1.d0-(xw+yw)

11

! Calibrate primaries to white

! (As FORTRAN does not discriminate upper and lower case,

! instead of X rather Xu is written, u like uppercase)

XuW=xw/yw

YuW=1.0d0

ZuW=zw/yw

call SSLE(xr,xg,xb,yr,yg,yb,zr,zg,zb,XuW,YuW,ZuW,

* u1,u2,u3)

XuR=xr*u1

YuR=yr*u1

ZuR=zr*u1

XuG=xg*u2

YuG=yg*u2

ZuG=zg*u2

XuB=xb*u3

YuB=yb*u3

ZuB=zb*u3

! the brightnesses of the primaries stored in array Yuarray

Yuarray(1)=YuR

Yuarray(2)=YuG

Yuarray(3)=YuB

! Determination of RGB-coordinates of the primaries XYZ.

c superpose X from R, G, B

call SSLE(XuR,XuG,XuB,YuR,YuG,YuB,ZuR,ZuG,ZuB,

* 1.d0,0.d0,0.d0,RuX,GuX,BuX)

c superpose Y from R, G, B

call SSLE(XuR,XuG,XuB,YuR,YuG,YuB,ZuR,ZuG,ZuB,

* 0.d0,1.d0,0.d0,RuY,GuY,BuY)

12

c superpose Z from R, G, B

call SSLE(XuR,XuG,XuB,YuR,YuG,YuB,ZuR,ZuG,ZuB,

* 0.d0,0.d0,1.d0,RuZ,GuZ,BuZ)

c Transformation matrix is now ready.

c To go from XYZ to RGB one computes

c RuColor = RuX*XuColor + RuY*YuColor + RuZ*ZuColor

c and analogously for G and B

c---

! Here starts the main loop

do ic=1,1000

ds=0.005d0*ic

! Lengths are measured in mu-m (micrometers)

! ds is the optical path difference of the

! two interfering rays

! compute XYZ

call lambInt(XF,YF,ZF,ds,Tabs)

! convert XYZ to RGB

RuF=RuX*XF+RuY*YF+RuZ*ZF

GuF=GuX*XF+GuY*YF+GuZ*ZF

BuF=BuX*XF+BuY*YF+BuZ*ZF

colcomp(1,ic)=RuF

colcomp(2,ic)=GuF

colcomp(3,ic)=BuF

enddo ! ic

13

! Scale to make the maximum of R, G or B equal to 1,

! Gamma-correction and conversion to 8-bit-format

themaximum=0.d0

do j=1,nhor

do k=1,3

if (colcomp(k,j) .gt. themaximum)

* themaximum=colcomp(k,j)

enddo

enddo

ammaG=1.0d0/2.4d0

do j=1,nhor

Yu=(colcomp(1,j)*YuR+colcomp(2,j)*YuG+colcomp(3,j)*YuB)

* /themaximum ! brightness

do i=1,3

colcomp(i,j)=colcomp(i,j)/themaximum

if (colcomp(i,j).lt.0.0) then

Corrf=Yu/(Yu-colcomp(i,j)*Yuarray(i))

do k=1,3 ! readjust brightness

colcomp(k,j)=colcomp(k,j)*Corrf

enddo

colcomp(i,j)=0.0

endif

if (colcomp(i,j).le.0.00304) then

colcomp(i,j)=colcomp(i,j)*12.92

else

colcomp(i,j)=1.055*colcomp(i,j)**ammaG-0.055

endif

icv(i,j)=int(255.0*colcomp(i,j))

enddo

enddo

14

! Produce a ppm-image

! http://netpbm.sourceforge.net/doc/ppm.html

ndepth=255

nvert=80

open(unit=7,file='thinfilm.ppm',status='unknown')

write(7,*) 'P3 '

write(7,*) '# thinfilm.ppm '

write(7,*) nhor,nvert

write(7,*) ndepth

do j=1,nvert-10

do i=1,nhor

write(7,*) icv(1,i),icv(2,i),icv(3,i)

enddo

enddo

! make scale-ticks in 500-nm-intervals

do i=1,nhor

iskalf(i)=0

enddo

do i=1,10

iskalf(100*i-1)=255

iskalf(100*i)=255

if (i.lt.10) iskalf(100*i+1)=255

enddo

do j=nvert-9,nvert

do i=1,nhor

write(7,*) iskalf(i),iskalf(i),iskalf(i)

enddo

enddo

stop

end

c--

15

function Refl(s,alambd)

! Reflection at thin film, not normalized

implicit real*8 (a-h,o-z)

common XuR,YuR,ZuR,XuG,YuG,ZuG,XuB,YuB,ZuB,

1 RuX,GuX,BuX,RuY,GuY,BuY,RuZ,GuZ,BuZ,

2 pi

beta=0.95d0

Refl=1.d0+beta*beta-2.d0*beta*cos(s*2.d0*pi/alambd)

end

c--

subroutine lambInt(Xw,Yw,Zw,ds,Tabs)

implicit real*8 (a-h,o-z)

real*4 xbar(95),ybar(95),zbar(95)

common XuR,YuR,ZuR,XuG,YuG,ZuG,XuB,YuB,ZuB,

1 RuX,GuX,BuX,RuY,GuY,BuY,RuZ,GuZ,BuZ,

2 pi

! Colour matching functions, 5 nm intervals,

! starting at 360 nm

! Source:

! http://cvrl.ioo.ucl.ac.uk/database/data/cmfs/ciexyz31.txt

! (new ordering)

data (xbar(i),i=1,95)/

* 0.129900E-03, 0.232100E-03, 0.414900E-03,

* 0.741600E-03, 0.136800E-02, 0.223600E-02,

* 0.424300E-02, 0.765000E-02, 0.143100E-01,

* 0.231900E-01, 0.435100E-01, 0.776300E-01,

* 0.134380E+00, 0.214770E+00, 0.283900E+00,

* 0.328500E+00, 0.348280E+00, 0.348060E+00,

* 0.336200E+00, 0.318700E+00, 0.290800E+00,

* 0.251100E+00, 0.195360E+00, 0.142100E+00,

* 0.956400E-01, 0.579500E-01, 0.320100E-01,

16

* 0.147000E-01, 0.490000E-02, 0.240000E-02,

* 0.930000E-02, 0.291000E-01, 0.632700E-01,

* 0.109600E+00, 0.165500E+00, 0.225750E+00,

* 0.290400E+00, 0.359700E+00, 0.433450E+00,

* 0.512050E+00, 0.594500E+00, 0.678400E+00,

* 0.762100E+00, 0.842500E+00, 0.916300E+00,

* 0.978600E+00, 0.102630E+01, 0.105670E+01,

* 0.106220E+01, 0.104560E+01, 0.100260E+01,

* 0.938400E+00, 0.854450E+00, 0.751400E+00,

* 0.642400E+00, 0.541900E+00, 0.447900E+00,

* 0.360800E+00, 0.283500E+00, 0.218700E+00,

* 0.164900E+00, 0.121200E+00, 0.874000E-01,

* 0.636000E-01, 0.467700E-01, 0.329000E-01,

* 0.227000E-01, 0.158400E-01, 0.113592E-01,

* 0.811092E-02, 0.579035E-02, 0.410946E-02,

* 0.289933E-02, 0.204919E-02, 0.143997E-02,

* 0.999949E-03, 0.690079E-03, 0.476021E-03,

* 0.332301E-03, 0.234826E-03, 0.166150E-03,

* 0.117413E-03, 0.830753E-04, 0.587065E-04,

* 0.415099E-04, 0.293533E-04, 0.206738E-04,

* 0.145598E-04, 0.102540E-04, 0.722146E-05,

* 0.508587E-05, 0.358165E-05, 0.252252E-05,

* 0.177651E-05, 0.125114E-05/

data (ybar(i),i=1,95)/

* 0.391700E-05, 0.696500E-05, 0.123900E-04,

* 0.220200E-04, 0.390000E-04, 0.640000E-04,

* 0.120000E-03, 0.217000E-03, 0.396000E-03,

* 0.640000E-03, 0.121000E-02, 0.218000E-02,

* 0.400000E-02, 0.730000E-02, 0.116000E-01,

* 0.168400E-01, 0.230000E-01, 0.298000E-01,

* 0.380000E-01, 0.480000E-01, 0.600000E-01,

* 0.739000E-01, 0.909800E-01, 0.112600E+00,

17

* 0.139020E+00, 0.169300E+00, 0.208020E+00,

* 0.258600E+00, 0.323000E+00, 0.407300E+00,

* 0.503000E+00, 0.608200E+00, 0.710000E+00,

* 0.793200E+00, 0.862000E+00, 0.914850E+00,

* 0.954000E+00, 0.980300E+00, 0.994950E+00,

* 0.100000E+01, 0.995000E+00, 0.978600E+00,

* 0.952000E+00, 0.915400E+00, 0.870000E+00,

* 0.816300E+00, 0.757000E+00, 0.694900E+00,

* 0.631000E+00, 0.566800E+00, 0.503000E+00,

* 0.441200E+00, 0.381000E+00, 0.321000E+00,

* 0.265000E+00, 0.217000E+00, 0.175000E+00,

* 0.138200E+00, 0.107000E+00, 0.816000E-01,

* 0.610000E-01, 0.445800E-01, 0.320000E-01,

* 0.232000E-01, 0.170000E-01, 0.119200E-01,

* 0.821000E-02, 0.572300E-02, 0.410200E-02,

* 0.292900E-02, 0.209100E-02, 0.148400E-02,

* 0.104700E-02, 0.740000E-03, 0.520000E-03,

* 0.361100E-03, 0.249200E-03, 0.171900E-03,

* 0.120000E-03, 0.848000E-04, 0.600000E-04,

* 0.424000E-04, 0.300000E-04, 0.212000E-04,

* 0.149900E-04, 0.106000E-04, 0.746570E-05,

* 0.525780E-05, 0.370290E-05, 0.260780E-05,

* 0.183660E-05, 0.129340E-05, 0.910930E-06,

* 0.641530E-06, 0.451810E-06/

data (zbar(i),i=1,95)/

* 0.606100E-03, 0.108600E-02, 0.194600E-02,

* 0.348600E-02, 0.645000E-02, 0.105500E-01,

* 0.200500E-01, 0.362100E-01, 0.678500E-01,

* 0.110200E+00, 0.207400E+00, 0.371300E+00,

* 0.645600E+00, 0.103905E+01, 0.138560E+01,

* 0.162296E+01, 0.174706E+01, 0.178260E+01,

* 0.177211E+01, 0.174410E+01, 0.166920E+01,

18

* 0.152810E+01, 0.128764E+01, 0.104190E+01,

* 0.812950E+00, 0.616200E+00, 0.465180E+00,

* 0.353300E+00, 0.272000E+00, 0.212300E+00,

* 0.158200E+00, 0.111700E+00, 0.782500E-01,

* 0.572500E-01, 0.421600E-01, 0.298400E-01,

* 0.203000E-01, 0.134000E-01, 0.875000E-02,

* 0.575000E-02, 0.390000E-02, 0.275000E-02,

* 0.210000E-02, 0.180000E-02, 0.165000E-02,

* 0.140000E-02, 0.110000E-02, 0.100000E-02,

* 0.800000E-03, 0.600000E-03, 0.340000E-03,

* 0.240000E-03, 0.190000E-03, 0.100000E-03,

* 0.500000E-04, 0.300000E-04, 0.200000E-04,

* 0.100000E-04, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00, 0.000000E+00,

* 0.000000E+00, 0.000000E+00/

alf=14.388e3

! alf = h.c/kB (Planck constant times velocity of light

! divided by Boltzmann constant)

alamo=0.560

! the spectral distribution sl of the illumination is

! normalized to 1 at this wavelength

19

Xw=0.

Yw=0.

Zw=0.

do i=1,95

wlambda=0.355+0.005*i

sl=(alamo/wlambda)**5*(exp(alf/(Tabs*alamo))-1.0)

+ /(exp(alf/(Tabs*wlambda))-1.0)

hil=Refl(ds,wlambda)*sl

Xw=Xw+xbar(i)*hil

Yw=Yw+ybar(i)*hil

Zw=Zw+zbar(i)*hil

enddo

return

end

c--

subroutine SSLE(a11,a12,a13,a21,a22,a23,a31,a32,a33,

1 b1,b2,b3,x,y,z)

! solve system of 3 linear equations

! A_ik . x_k = b_i

implicit real*8 (a-h,o-z)

det=a11*a22*a33+a12*a23*a31+a13*a21*a32

1 -a13*a22*a31-a12*a21*a33-a11*a23*a32

x =(b1*a22*a33+a12*a23*b3+a13*b2*a32

1 -a13*a22*b3-a12*b2*a33-b1*a23*a32)/det

y =(a11*b2*a33+b1*a23*a31+a13*a21*b3

1 -a13*b2*a31-b1*a21*a33-a11*a23*b3)/det

z =(a11*a22*b3+a12*b2*a31+b1*a21*a32

1 -b1*a22*a31-a12*a21*b3-a11*b2*a32)/det

return

end

c--

